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Abstract

As a model for streaming multimedia applications, we study an unreliable retrial queue with
infinite-capacity orbit and normal queue for which the retrial rate and the server repair rate are
controllable. Customers join the retrial orbit if and only if their service is interrupted by a server
failure. Interrupted customers do not rejoin the normal queue but repeatedly attempt to access
the server at i.i.d. intervals until it is found functioning and idle. We provide stability conditions,
queue length distributions, stochastic decomposition results, and performance measures. The
joint optimization of the retrial and server repair rates is also studied.
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1 Introduction

In this article, we analyze an M/G/1 retrial queue with an unreliable server whose orbit and

normal queue have infinite storage capacity and whose retrial and server repair rates are control-

lable. Customers in service join the retrial orbit if and only if they are interrupted by a server

breakdown and do not rejoin the normal queue, but rather attempt to access the server directly at

random intervals independently of arrivals or other retrial customers. However, these interrupted

customers can regain access to the server only when it is operational and idle and repeat service

until they have been completed. Arriving customers who find a failed server join the normal queue.

We allow for both active breakdowns which occur during a service cycle, and idle breakdowns which

occur while the server is not failed but idle. The server may not breakdown while under repair. The

times between customer arrivals, breakdowns, retrials, and repairs are assumed to be exponentially

distributed while the service times are general.

Over the past two decades, advances in telecommunications and computer networking tech-

nologies have reinvigorated the study of queueing systems in general and retrial queueing systems

in particular. The model we present here is well-suited to model computer network streaming

multimedia applications. The primary (or normal) queue is similar to a 1-persistent carrier-sense

multiple-access (CSMA) system. When the oldest packet in the normal queue detects that the

transmission medium (or server) is free, transmission begins immediately. If the communication

medium fails during transmission, the packet is sent to a retrial queue which is analogous to a

non-persistent CSMA system. If the medium is unavailable (i.e., busy or failed), then the retrial

packet waits a random amount of time before checking the status of the medium again. This process

repeats until the retrial packet finds the transmission medium operational and idle. In this sense,

the model is a priority queue wherein the packets that are not interrupted by a transmission fail-

ure have non-preemptive priority over those awaiting availability of the transmission medium. An

important application is that of streaming voice or video wherein transmitted packets are used for

playback upon reception and also stored for future use. The packets used for immediate playback

are time-sensitive in that, if they are not received within a given time threshold, they are effectively
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useless. These packets correspond to the priority customers. Packets that are interrupted during

transmission can still be used for later playback from the stored copy of the stream, but their

transmission time is no longer important. These packets constitute customers in the orbit. By

developing analytical expressions for congestion and delay measures in stable systems, it is possible

to simultaneously select a packet retrial rate and server repair rate that minimize the long-run

average cost of holding customers in either queue.

In addition to its practical relevance, the model we present also exhibits extremely interesting

mathematical properties that warrant investigation in their own right. The presence of an infinite

waiting space for primary customers introduces an interaction between the two infinite queues.

This dynamic does not exist in the vast majority of retrial queueing models which include only

an infinite retrial orbit and do not consider an infinite waiting space for primary arrivals. We

will show that the steady state orbit size and the overall system size both possess a stochastic

decomposition property. Moreover, an interesting stability result emerges, namely that the normal

queue may remain stable even if the condition for system stability is violated. Using the steady

state distributions and corresponding queueing performance measures, we illustrate the means by

which to simultaneously select the optimal retrial rate and repair capacity to minimize a long-run

average cost criterion.

The literature addressing retrial queues with unreliable servers is relatively sparse but growing

at a rapid pace. The seminal papers in this area are [1] and [15]. All models considering retrial

queues with server breakdowns assume an M/G/1/1 loss system with the exception of [6] and [21].

Although [10] considered an M/G/1 retrial queue with infinite-capacity orbit and normal queue,

the authors did not consider an unreliable server. For retrial models with no waiting room and

server breakdowns, customers arriving to find the server unavailable (busy or failed) join the orbit.

Some models (cf. [2], [3], [7], [16], [20], [23], [25], [27]) force these customers into the orbit while

others ([4], [5], [6], [11], [15], [26]) provide the option of joining the orbit or departing the system.

With the exception of two cases ([3] and [25]), these models also either force, or provide the option

for, in-service customers interrupted by a server failure to join the orbit. Our model differs from
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these in that arriving customers who find the server busy or failed join the normal queue whereas

interrupted customers always join the orbit and attempt to re-access the server at random intervals.

A variety of failure types are considered in the literature including starting failures ([16], [20], [27]),

vacations ([7], [23]), active breakdowns ([6], [25], [26]), and like our model, both active and idle

breakdowns ([2], [3], [4], [5], [11], [15]). Most orbits are assumed to behave as infinite-server queues

with identical exponential service times; however some models (cf. [7], [16], and [26]) consider

orbits as FCFS queues.

For retrial systems with no breakdowns and zero capacity in the normal queue, the most

common optimal control strategies include the optimal routing of arriving customers ([9], [10], [22])

and selection of the optimal retrial rate ([8], [13], [14]). For general queueing systems (non-retrial

queues), researchers such as [17], [19], and [24] have considered optimal N -policies wherein the server

remains idle until exactly N (N ≥ 1) customers are present in the queue. The current literature

addressing the optimal design or control of unreliable retrial queues is very sparse. It appears that

only [7] formally addressed these issues for a retrial queue with vacations. In that work, the author

presents an optimal N -policy, an optimal T -policy and he computes the optimal retrial rate that

minimizes costs using an N -policy. An informal, graphical approach to the optimal control and

design of a retrial queue with vacations was presented in [20] wherein the authors examined the

impact of the retrial rate, the number of input sources, the arrival rate, and the service rate on the

mean waiting time and throughput.

As a model for streaming multimedia applications, this paper is concerned with the analysis and

control of an M/G/1 retrial queue with an infinite-capacity orbit and normal queue. In particular,

we consider the problem of simultaneously selecting an optimal retrial rate and optimal repair rate

with the objective of minimizing the long-run average operating cost which is a function of the

key queueing performance measures. To this end, using the method of supplementary variables

and a classical generating function approach, we derive the steady state joint distribution of the

orbit size and normal queue size when the server is idle (operational and not occupied), failed

(non-operational and being repaired), or busy (operational and occupied). Using these results, we
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obtain the joint generating function of the orbit size and normal queue size as well as the generating

function for the overall system size (the total number of customers in orbit, normal queue and in

service), independent of the server’s status. We provide a necessary and sufficient condition for

stability of the orbit and system as well as a (distinct) condition for stability of the normal queue.

Moreover, we show that the steady state length of the retrial queue and the system size can be

stochastically decomposed.

The remainder of the paper is organized as follows. Section 2 provides the model description

and mathematical notation. In section 3 we establish stability conditions and, by means of gener-

ating functions, derive the queue length distributions, key queueing performance measures, as well

as the steady state distribution of the server’s status. In section 4 we present stochastic decompos-

ability results for queue length distributions. Finally, section 5 presents and illustrates a nonlinear

optimization problem for the optimal selection of the retrial and server repair rates.

2 Model Description

Customers arrive to the system according to a homogeneous Poisson process with rate λ > 0.

Service times form an independent and identically distributed (i.i.d.) sequence of random variables

with absolutely continuous distribution function (d.f.) B, probability density function (p.d.f.) b,

and service completion rate

µ(x) =
b(x)

1−B(x)
, x ≥ 0.

For s ≥ 0, let

b∗(s) =
∫ ∞

0
e−sxb(x)dx

denote the Laplace transform of b. Server failures occur according to a Poisson process with rate

ξ > 0 when the server is not being repaired. The repair time is exponentially distributed with

rate parameter α > 0. An in-service customer interrupted by a server failure enters the orbit and

spends an exponential amount of time there with rate θ > 0, after which it either enters service

(if possible) or remains in the orbit for an additional exponentially distributed time with rate θ.

The arrival, service, failure, repair, and retrial processes are assumed to be mutually independent.
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Denote by Qt the number of customers in the normal queue at time t, excluding any customer that

might be in service, and let Rt denote the number of customers in the orbit at time t. The random

variable Ut is the occupation status of the server given by

Ut =
{

1, if the server is occupied at time t
0, if the server is not occupied at time t

while St describes the operational status of the server at time t defined by

St =
{

1, if the server is not failed at time t
0, if the server is failed at time t

.

Let Xt denote the elapsed service time of the customer in service at time t so that the continuous-

time stochastic process, {(Qt, Ut, Rt, St, Xt) : t ≥ 0} describes the state of the system. Let Nt

denote the total number of customers in the system at time t (i.e., in orbit, normal queue, and in

service). Assume that as t →∞, Qt ⇒ Q, Rt ⇒ R, St ⇒ S and Nt ⇒ N where “⇒” denotes weak

convergence.

Now define

π0,0,j,1 = lim
t→∞P (Qt = 0, Ut = 0, Rt = j, St = 1), j ≥ 0

πk,0,j,0 = lim
t→∞P (Qt = k, Ut = 0, Rt = j, St = 0), j, k ≥ 0

πk,1,j,1(x) = lim
t→∞P (Qt = k, Ut = 1, Rt = j, St = 1, Xt < x), j, k ≥ 0

as the limiting probabilities that the system is in an idle, failed, or busy state, respectively. With

the transform variables z1 and z2 corresponding to the orbit size and normal queue size, define

φ0,0,1(z1) =
∞∑

j=0

zj
1π0,0,j,1,

φk,0,0(z1) =
∞∑

j=0

zj
1πk,0,j,0,

φk,1,1(x, z1) =
∞∑

j=0

zj
1πk,1,j,1(x).

These are, respectively, the generating functions for π0,0,j,1, πk,0,j,0, and πk,1,j,1(x) with respect to
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the orbit size. Further define, respectively,

ψ0,0(z1, z2) =
∞∑

k=0

zk
2φk,0,0(z1),

ψ1,1(x, z1, z2) =
∞∑

k=0

zk
2φk,1,1(x, z1),

the generating functions for φk,0,0(z1) and φk,1,1(x, z1) with respect to the normal queue size. The

joint p.g.f. of the orbit and normal queue size when the server is not failed and busy, is given by

ψ1,1(z1, z2) =
∫ ∞

0
ψ1,1(x, z1, z2)dx.

Let p denote the joint probability mass function (p.m.f.) of R and Q while q denotes the p.m.f. of

N . By summing over the three distinct and exhaustive server states, we denote by

G(z1, z2) =
∞∑

k=0

∞∑

j=0

p(j, k)zj
1z

k
2 = φ0,0,1(z1) + ψ0,0(z1, z2) + ψ1,1(z1, z2),

the joint generating function for the orbit and normal queue size. In a similar manner, we denote

by

H(z) =
∞∑

j=0

q(j)zj = φ0,0,1(z) + ψ0,0(z, z) + zψ1,1(z, z),

the generating function for the overall system size.

In the next section, we provide stability conditions and formally derive the generating functions

defined in this section. Subsequently, we use these to characterize queue length distributions and

performance measures.

3 Stability Analysis and Steady State Equations

In this section, we provide a necessary and sufficient condition for stability of the overall queue-

ing system and derive the steady state joint distribution of the orbit and normal queue size when

the server is idle, failed, or busy, respectively. Subsequently, we obtain the joint distribution of

the orbit size and normal queue size, and the distribution of the system size, independent of the

server’s status. Additionally, we obtain standard queueing performance measures as well as the

limiting distribution of the server’s status.
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Before proceeding to the main result, we first provide a lemma that is needed to characterize

the stability conditions and steady state distributions. As in Aissani and Artalejo [4], define the

fundamental server period as the time from which a service cycle begins until the next time at

which the server is able to initiate a new service cycle. Denote this random duration by T . Let Nr

and Nq respectively denote the number of customers entering the orbit and normal queue during

(0, T ], and let a(i, j) = P (Nr = i,Nq = j), i, j ≥ 0. Define the generating function

Q(z1, z2) =
∞∑

i=0

∞∑

j=0

a(i, j)zi
1z

j
2, |z1| ≤ 1, |z2| ≤ 1.

Then one can verify (see [4]) that

Q(z1, z2) = b∗(ξ + λ(1− z2)) +
αz1ξ(1− b∗(ξ + λ(1− z2))

(α + λ(1− z2))(ξ + λ(1− z2))
.

Now let us define the quantity

ρ1 = − d

dε
Q(1, 1− ε)

∣∣∣
ε=0

=
λ(1− b∗(ξ))(α + ξ)

αξ
,

where b∗(ξ) is the Laplace transform of the service time p.d.f. evaluated at ξ. Using these definitions

we have the following important result which is needed to obtain our main results.

Lemma 1 For either |z1| < 1 or |z1| ≤ 1 and ρ1 > 1 the relation

z2 −Q(z1, z2)

has, as a function of z2, one and only one zero, g(z1), inside the region |z2| < 1. In case z1 = 1,

g(1) is the smallest positive real zero with g(1) < 1 if ρ1 > 1, and g(1) = 1 if ρ1 ≤ 1.

Proof. The proof is similar to that of Theorem 3 in [18, p. 351-352]. Now for the first part,

on |z1| < 1, applying Rouche’s theorem to the function z2 and the generating function Q(z1, z2),

we conclude that there is one and only one zero, g(z1), for each z2 inside the unit disk |z2| < 1.

For the second part, consider the quantity ρ1 and the case when z1 = 1. The function Q(z1, z2) is

monotonically increasing in z2 for z2 ∈ [0, 1] such that 0 < Q(1, 0) < 1 and Q(1, 1) = 1. Thus, if

z1 = 1 and ρ1 > 1, then g(1) is the minimal, positive real zero with g(1) < 1. On the other hand,

if ρ1 ≤ 1, g(1) = 1 is the unique zero, and this completes the proof.
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Using Lemma 1, we now characterize the stability condition for the overall system size (and orbit

size), as well as the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2). Theorem 1 states

that the long-run proportion of time the server is available for serving customers must exceed the

long-run proportion of time the server is busy if the system is to remain stable.

Theorem 1 The queueing system is stable if and only if ρ < 1 where

ρ =
λ(1− b∗(ξ))(α + ξ)

αb∗(ξ)ξ
. (1)

In such a case, the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2) are, respectively,

given by

φ0,0,1(z1) =
αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)

ξb∗(ξ)(α + ξ)
exp

{
−1

θ

∫ 1

z1

λ(1− g(u)) + ξ(1− α
α+λ(1−g(u)) )

g(u)− u
du

}
, (2)

ψ0,0(z1, z2) =

{
(g(z1)− z1)[α + λ(1− g(z1))][ξ + λ(1− z2)][z2 − B̂(z2)− z1(1− B̂(z2))]

(z2 − B̂(z2)) [α + λ(1− z2)] [ξ + λ(1− z2)]− αξ(1− B̂(z2))z1

+
λz1(1− B̂(z2))(z2 − z1)(1− g(z1))[α + ξ + λ(1− g(z1))]

(z2 − B̂(z2)) [α + λ(1− z2)] [ξ + λ(1− z2)]− αξ(1− B̂(z2))z1

}
ξφ0,0,1(z1)

(g(z1)− z1)[α + λ(1− g(z1))]

(3)

and

ψ1,1(z1, z2) =

{
(z2 − z1)(1− g(z1))[α + ξ + λ(1− g(z1))][α + λ(1− z2)]

(z2 − B̂(z2)) [α + λ(1− z2)] [ξ + λ(1− z2)]− αξ(1− B̂(z2))z1

− (1− z2)(g(z1)− z1)[α + λ(1− g(z1))][α + ξ + λ(1− z2)]

(z2 − B̂(z2)) [α + λ(1− z2)] [ξ + λ(1− z2)]− αξ(1− B̂(z2))z1

}
λ(1− B̂(z2))φ0,0,1(z1)

(g(z1)− z1)[α + λ(1− g(z1))]
(4)

where
B̂(z2) = b∗(ξ + λ(1− z2))

and, for z1 ∈ [0, 1], g(z1) verifies

g(z1) = b∗(ξ + λ(1− g(z1))) +
αξz1[1− b∗(ξ + λ(1− g(z1)))]

[α + λ(1− g(z1))][ξ + λ(1− g(z1))]
.

Proof. For j ≥ 0 and k ≥ 1 with πk,i,−1,l(x) = 0, the balance equations are

(α + λ)π0,0,j,0 = ξπ0,0,j,1 + ξ

∫ ∞

0
π0,1,j−1,1(x)dx, (5)

(α + λ)πk,0,j,0 = λπk−1,0,j,0 + ξ

∫ ∞

0
πk,1,j−1,1(x)dx, (6)

(λ + ξ + jθ)π0,0,j,1 = απ0,0,j,0 +
∫ ∞

0
µ(x)π0,1,j,1(x)dx, (7)

d

dx
π0,1,j,1(x) = −[µ(x) + λ + ξ]π0,1,j,1(x), (8)

d

dx
πk,1,j,1(x) = −[µ(x) + λ + ξ]πk,1,j,1(x) + λπk−1,1,j,1(x) (9)
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with boundary conditions

π0,1,j,1(0) = απ1,0,j,0 + λπ0,0,j,1 +
∫ ∞

0
µ(x)π1,1,j,1(x)dx + (j + 1)θπ0,0,j+1,1, (10)

πk,1,j,1(0) = απk+1,0,j,0 +
∫ ∞

0
µ(x)πk+1,1,j,1(x)dx. (11)

Multiplying both sides of Eqs. (5) through (11) by zj
1 and summing over all j, we obtain, respec-

tively, the following equations:

(α + λ)φ0,0,0(z1) = ξφ0,0,1(z1) + ξz1

∫ ∞

0
φ0,1,1(x, z1)dx, (12)

(α + λ)φk,0,0(z1) = λφk−1,0,0(z1) + ξz1

∫ ∞

0
φk,1,1(x, z1)dx, (13)

(λ + ξ)φ0,0,1(z1) + θz1
d

dz1
φ0,0,1(z1) = αφ0,0,0(z1) +

∫ ∞

0
µ(x)φ0,1,1(x, z1)dx, (14)

∂

∂x
φ0,1,1(x, z1) = −[µ(x) + λ + ξ]φ0,1,1(x, z1), (15)

∂

∂x
φk,1,1(x, z1) = −[µ(x) + λ + ξ]φk,1,1(x, z1) + λφk−1,1,1(x, z1), (16)

with boundary conditions

φ0,1,1(0, z1) = αφ1,0,0(z1) + λφ0,0,1(z1) +
∫ ∞

0
µ(x)φ1,1,1(x, z1)dx + θ

d

dz1
φ0,0,1(z1), (17)

φk,1,1(0, z1) = αφk+1,0,0(z1) +
∫ ∞

0
µ(x)φk+1,1,1(x, z1)dx. (18)

Multiplying both sides of Eq. (12) by z0
2 and Eq. (13) by zk

2 and summing over all k ≥ 0, we obtain

[α + λ(1− z2)]ψ0,0(z1, z2) = ξφ0,0,1(z1) + ξz1

∫ ∞

0
ψ1,1(x, z1, z2)dx. (19)

Performing a similar operation on Eqs. (15) and (16) as well as (17) and (18), we obtain, respec-

tively,
∂

∂x
ψ1,1(x, z1, z2) = −[µ(x) + ξ + λ(1− z2)]ψ1,1(x, z1, z2) (20)

and

ψ1,1(0, z1, z2) = λφ0,0,1(z1) + θ
d

dz1
φ0,0,1(z1) +

α

z2
[ψ0,0(z1, z2)− φ0,0,0(z1)]

+
1
z2

∫ ∞

0
µ(x)[ψ1,1(x, z1, z2)− φ0,1,1(x, z1)]dx. (21)

9



Solving Eq. (20), we obtain

ψ1,1(x, z1, z2) = ψ1,1(0, z1, z2)e−[ξ+λ(1−z2)]x(1−B(x)). (22)

Using Eqs. (14), (19), and (22) in (21) we obtain

ψ1,1(0, z1, z2) =
θ(z2 − z1) d

dz1
φ0,0,1(z1)− [λ(1− z2) + ξ(1− α

α+λ(1−z2))]φ0,0,1(z1)

z2 −
[
b∗(ξ + λ(1− z2)) + αz1ξ(1−b∗(ξ+λ(1−z2))

(α+λ(1−z2))(ξ+λ(1−z2))

] . (23)

Now by Lemma 1, the denominator of Eq. (23) has, for any z1 in the unit disk, a zero in the

region |z2| < 1. This must also be a zero for the numerator; therefore, we have from (23)

θ(z1 − g(z1))
d

dz1
φ0,0,1(z1) +

[
λ(1− g(z1)) + ξ

(
1− α

α + λ(1− g(z1))

)]
φ0,0,1(z1) = 0. (24)

In order to solve the differential equation (24), we first examine the function k(z1) = z1 − g(z1) =

z1 −Q(z1, g(z1)). Note that

d

dz1
g(z1)

∣∣∣∣
z1=1

=
d

dz1
Q(z1, g(z1))

∣∣∣∣
z1=1

=
αξ(1− b∗(ξ))

αξ − λ(1− b∗(ξ))(α + ξ)
=

1
b∗(ξ) − 1

1
b∗(ξ) − ρ

,

where ρ is defined in Eq. (1). We then observe that, for ρ ≤ 1, the quantity k(z1) never becomes

zero in |z1| < 1, while for ρ > 1 this quantity has one and only one zero, call it β, such that

β ∈ (0, 1) (see for example [12] or [18]). Now rearranging Eq. (24), define the function

h(z1) =
λ(1− g(z1)) + ξ

(
1− α

α+λ(1−g(z1))

)

z1 − g(z1)
,

and note that, for ρ < 1,

lim
z1→1

h(z1) = − λξ(1− b∗(ξ))(α + ξ)
αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)

= − ξρ

1− ρ
< ∞.

Thus, we conclude that h(z1) is analytic on the open disk |z1| < 1, and h(z1) can be defined at the

point z1 = 1. Therefore, on the closed disk |z1| ≤ 1, the differential equation,

d

dz1
φ0,0,1(z1) + h(z1)φ0,0,1(z1) = 0,

is verified by the function

φ0,0,1(z1) = K exp



−

1
θ

∫ 1

z1

λ(1− g(u)) + ξ
(
1− α

α+λ(1−g(u))

)

g(u)− u
du



 (25)
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where K is a constant of integration. For ρ < 1, φ0,0,1(z1) in Eq. (25) makes all generating functions

analytic in |z1| ≤ 1, |z2| ≤ 1. In particular, (2), (3), and (4) are obtained up to the multiplicative

constant K. To obtain this constant, we apply the normalization condition, φ0,0,1(1) + ψ0,0(1, 1) +

ψ1,1(1, 1) = 1, which yields

K =
αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)

ξb∗(ξ)(α + ξ)
= φ0,0,1(1),

the steady state probability that the server is not failed and idle.

To see that ρ < 1 is also necessary for system stability, assume that ρ > 1 and the system is

stable. By Lemma 1, when ρ > 1, the function z1−Q(z1, g(z1)) has one and only one zero, denoted

by β, with 0 < β < 1. Thus, the function h(z1) is not analytic in |z1| < 1. Substituting z1 = β in

Eq. (24) yields [
λ(1− β) + ξ

(
1− α

α + λ(1− β)

)]
φ0,0,1(β) = 0,

which implies that φ0,0,1(β) = 0 since the coefficient of φ0,0,1(β) does not equal zero. We must

therefore conclude that

φ0,0,1(β) =
∞∑

j=0

βjπ0,0,j,1 = 0.

However, it is not possible to find positive values π0,0,j,1, j ≥ 0, to satisfy the above relation, so the

system is not stable; thus, a contradiction.

Finally, suppose that ρ = 1 and the system is stable. When ρ = 1, the function z1−Q(z1, g(z1))

never becomes zero in the unit disk |z1| < 1; however, in this case

lim
z1→1

h(z1) = − ξρ

1− ρ
= −∞.

Differentiating Eq. (24) and evaluating at the point z1 = 1, we obtain the relation

−λ

(
α + ξ

α

)
d

dz1
g(z1)

∣∣∣∣
z1=1

φ0,0,1(1) = 0,

implying that φ0,0,1(1) = 0 since d
dz1

g(z1)
∣∣
z1=1

= 1 when ρ = 1. However, this contradicts the

hypothesis that the system is stable. Therefore, we conclude that the system cannot be stable

unless ρ < 1.
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Using Theorem 1, we next obtain the joint distribution of the orbit and normal queue size, as

well as the distribution of the overall system size, independent of server status.

Corollary 1 For ρ < 1, the probability generating functions G(z1, z2) and H(z) are given by

G(z1, z2) =





λ(1− B̂(z2))[α + ξz1 + λ(1− z2)](z2 − z1)(1− g(z1))[α + ξ + λ(1− g(z1))]

[g(z1)− z1][α + λ(1− g(z1))]
{

(z2 − B̂(z2))[α + λ(1− z2)][ξ + λ(1− z2)]− αξz1(1− B̂(z2))
}

− λ(1− B̂(z2))[α + ξz1 + λ(1− z2)](1− z2)[α + ξ + λ(1− z2)]

[α + λ(1− z2)]
{

(z2 − B̂(z2))[α + λ(1− z2)][ξ + λ(1− z2)]− αξz1(1− B̂(z2))
} +

[α + ξ + λ(1− z2)]

[α + λ(1− z2)]





× φ0,0,1(z1) (26)

and

H(z) =
[α + ξ + λ(1− z)]

{
αξB̂(z) + λB̂(z)(1− z)[α + ξ + λ(1− z)]

}

[α + λ(1− z)]
{

αξB̂(z)− λ(z − B̂(z))[α + ξ + λ(1− z)]
} φ0,0,1(z). (27)

Using standard methods, Eqs. (26) and (27) can be used to obtain the mth moment (m ≥ 1) of R,

Q, and N , respectively, as well as their probability distributions. The first moments are provided

in the following corollary.

Corollary 2 The steady state mean orbit size, mean normal queue size, and mean number in

system are respectively given by

E(R) =
ρ

1− ρ

[
α

α + ξ
· ξb∗(ξ)[ξ − λ(1− b∗(ξ))] + (α + ξ)[λ(1− b∗(ξ))− ξB̂′]

b∗(ξ)[αξ − λ(1− b∗(ξ))(α + ξ)]
+

ξ

θ

]
(28)

E(Q) = λ
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]

ξb∗(ξ)(α + ξ) [αξ − λ(1− b∗(ξ))(α + ξ)]
, (29)

and

E(N) =
λb∗(ξ)

{
ξ3 + (1− b∗(ξ))[αξ(α + 2ξ) + λ(α + ξ)2]

}− λξ(α + ξ)2B̂′

ξb∗(ξ)(α + ξ)[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]
+

ξρ

θ(1− ρ)
, (30)

where

B̂′ =
d

dz2
B̂(z2)

∣∣∣∣
z2=1

= λ

∫ ∞

0
xe−ξxb(x)dx.

Let S denote the duration of an arbitrary service time with c.d.f. B. Then as ξ → 0 in Eqs. (28)

to (30), it can be shown that

E(R) = 0,
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E(Q) =
λ2E(S2)

2(1− λE(S))
,

and

E(N) = λE(S) +
λ2E(S2)

2(1− λE(S))
.

These expressions are consistent with results for the standard M/G/1 queue with no failures and

no retrials. Furthermore, denote by WR, WQ and W , the time spent in the orbit, normal queue

and system by an arbitrary customer in the long-run, respectively. The expected values of these

random variables are obtained by applying Little’s Law to Eqs. (28) to (30), i.e., E(WR) = λ−1E(R),

E(WQ) = λ−1E(Q), and E(W ) = λ−1E(N).

Corollary 2 also confirms that ρ < 1 is necessary for the stability of R (and N), and by (29)

we see that ρ1 < 1 is necessary for the stability of Q. That is, the normal queue can be stable

even if the orbit stability condition is violated. Owing to the nature of the orbit dynamics, retrial

customers are subordinate to normal customers and may be served only when the server is idle

and operational. Hence, normal queue customers experience a greater effective service rate than

do retrial customers, and thus, it is possible that the orbit may continue to grow while the normal

queue remains stable.

Finally, we characterize the steady state distribution of the server’s status by directly applying

the results of Theorem 1. Let pI , pF , and pB respectively denote the limiting probability that the

server is idle, failed, or busy.

Corollary 3 For ρ < 1, the steady state distribution of the server’s status is given by

pI = lim
z1→1

φ0,0,1(z1) =
α

α + ξ
− λ(1− b∗(ξ))

ξb∗(ξ)
,

pF = lim
z1→1
z2→1

ψ0,0(z1, z2) =
ξ

α + ξ
,

and

pB = lim
z1→1
z2→1

ψ1,1(z1, z2) =
λ(1− b∗(ξ))

ξb∗(ξ)
.

In the following section we show that the orbit and system size can be stochastically decomposed

before considering the optimal selection of the retrial and repair rates in section 5.
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4 Stochastic Decomposition

In this section, we demonstrate that both the orbit and system size exhibit a stochastic de-

composition property which has been observed for the system size distribution of many M/G/1

models including those with vacations, retrial queues, and breakdowns (cf. [4, 11, 16, 27]). Falin

and Templeton [12] provide several stochastic decomposition results, including the decomposability

of the vector of server status and the orbit size, in the standard M/G/1 retrial queue (i.e., one with

no infinite waiting space and no server breakdowns).

Allowing θ →∞ in our model yields a model in which retrial customers instantaneously attempt

to re-access the server (i.e., an instantaneous feedback model). Let R̂ denote the steady state orbit

size in the instantaneous feedback model, and denote the generating function of R̂ by E(zR̂) for

|z| ≤ 1. Let N̂ denote the steady state total number of customers in the system in the instantaneous

feedback model and denote its generating function by E(zN̂ ) for |z| ≤ 1. Finally, let V be a random

variable whose generating function is given by

E(zV ) = exp

{
−1

θ

∫ 1

z1

λ(1− g(u)) + ξ(1− α
α+λ(1−g(u)))

g(u)− u
du

}
, |z| ≤ 1. (31)

The following two propositions describe the decomposability of the orbit and system size distribu-

tions.

Proposition 1 The random variable R may be expressed as the sum of two independent random

variables, one of which is the steady state orbit size in the instantaneous feedback model and the

other is V , i.e.,

R = R̂ + V. (32)

Proof. Note that Eqs. (2), (3), (4), (26), and (27) depend on the retrial rate θ only through

the generating function E(zV
1 ). Therefore, we may write the generating function for R̂ as

E(zR̂
1 ) = lim

θ→∞
G(z1, 1) = AG(z1)

where, using L’Hospital’s rule, it can be shown that

AG(z1) = (1− ρ)
[
1 +

λ(α + ξz1)(1− g(z1))[α + ξ + λ(1− g(z1))]
ξ(α + ξ)(g(z1)− z1)[α + λ(1− g(z1))]

]
.
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Now since E(zR
1 ) ≡ G(z1, 1), we may write

E(zR
1 ) = AG(z1) exp

{
−1

θ

∫ 1

z1

λ(1− g(u)) + ξ(1− α
α+λ(1−g(u)))

g(u)− u
du

}

= E(zR̂
1 )E(zV

1 )

= E(zR̂+V
1 ).

Similar behavior may be observed for the steady state system size as noted in Proposition 2.

Proposition 2 The random variable N may be expressed as the sum of two independent random

variables, one of which is the steady state system size in the instantaneous feedback model and the

other is V , i.e.,

N = N̂ + V. (33)

Proof. The proof is analogous to that of Proposition 1. Note that by setting z1 = z2 = z in

Eqs. (2), (3), and (4) we obtain

E(zN ) ≡ H(z) = φ0,0,1(z) + ψ0,0(z, z) + zψ1,1(z, z).

The generating function of N̂ is given by

E(zN̂ ) = lim
θ→∞

H(z) = AH(z)

where

AH(z) =
α(1− ρ)[α + ξ + λ(1− z)]

{
αξB̂(z) + λB̂(z)(1− z)[α + ξ + λ(1− z)]

}

(α + ξ)[α + λ(1− z)]
{

αξB̂(z)− λ(z − B̂(z))[α + ξ + λ(1− z)]
} .

The generating function for N is the product of these two; that is,

E(zN ) = AH(z) exp

{
−1

θ

∫ 1

z1

λ(1− g(u)) + ξ(1− α
α+λ(1−g(u)))

g(u)− u
du

}

= E(zN̂ )E(zV )

= E(zN̂+V ).
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In the next section we formulate an optimization problem for the selection of the optimal

retrial and repair rates that minimize the long-run average cost of operating the queueing system,

subject to a budget constraint. We also provide two illustrative examples using distinct service

time distributions.

5 Optimal Retrial and Repair Rates

We now consider the simultaneous optimal selection of the retrial and repair rates that minimize

the long-run average operating costs. The cost function includes the cost of service, the cost of

holding customers in the normal queue, and the cost of holding customers in the orbit. Required

for the optimization are the queueing performance measures E(R), E(Q), E(WR), and E(WQ), as

well as the expected number of customers in service, λ(1− b∗(ξ))/ξb∗(ξ), and the expected time to

complete service, (1− b∗(ξ))/ξb∗(ξ). The cost per unit time per customer in service is cS while the

holding costs per unit time per customer in the orbit and normal queue are respectively denoted

by cR and cQ. The coefficient cθ is the cost of one “unit” of retrial rate while cα is the cost of one

“unit” of repair rate. Using Eqs. (28) and (29), we solve the optimization problem

Minimize C(θ, α) = cS
λ(1− b∗(ξ))2

ξ2b∗(ξ)2
+ cRE(R)E(WR) + cQE(Q)E(WQ)

Subject to
λ(1− b∗(ξ))(α + ξ)− αξb∗(ξ) < 0 (34)

cθθ + cαα ≤ D (35)

θ, α > 0 (36)

where D is a fixed budget (D < ∞). Constraint (34) enforces the stability condition (ρ < 1)

and (35) is a budget constraint that limits the attainable repair capacity and the rate at which

interrupted customers may attempt to re-access the server.

5.1 Convexity Analysis

The uniqueness of a global solution to the above optimization problem can be established by

showing it is a convex program. The existence of a solution will then be shown directly.
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The feasible region, defined by

X = {(θ, α) : λ(1− b∗(ξ))(α + ξ)− αξb∗(ξ) < 0; cθθ + cαα ≤ D; θ, α > 0},

is a convex set since it is defined by a finite set of linear constraints. Strict convexity of the objective

function, which will now be proved, will complete the uniqueness proof. Expanding the terms of

C(θ, α) gives

C(θ, α) = cS
λ(1− b∗(ξ))2

ξ2b∗(ξ)2
+ cQλ

(
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]

ξb∗(ξ)(α + ξ) [αξ − λ(1− b∗(ξ))(α + ξ)]

)2

+ cRλ

(
αλ(1− b∗(ξ))

ξb∗(ξ)[ξ − λ(1− b∗(ξ))] + (α + ξ)[λ(1− b∗(ξ))− ξB̂′]
b∗(ξ)[αξ − λ(1− b∗(ξ))(α + ξ)][αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]

+
λξ(α + ξ)(1− b∗(ξ))

θ[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]

)2

. (37)

The first term on the right-hand side (r.h.s.) of Eq. (37) depends on neither θ nor α, and hence,

does not affect the convexity of C. To prove the convexity of the other two terms, the following

functions are defined:

fR1(α) = α
ξb∗(ξ)[ξ − λ(1− b∗(ξ))] + (α + ξ)[λ(1− b∗(ξ))− ξB̂′]

[αξ − λ(1− b∗(ξ))(α + ξ)][αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]
,

fR2(θ, α) =
λξ(α + ξ)(1− b∗(ξ))

θ[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]
,

fR(θ, α) =
λ(1− b∗(ξ))

b∗(ξ)
fR1(α) + fR2(θ, α),

and

fQ(α) =
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]

(α + ξ) [αξ − λ(1− b∗(ξ))(α + ξ)]
.

The next two lemmas are needed to prove the strict convexity of C(θ, α) on X.

Lemma 2 The function f2
R(θ, α) is strictly convex on X.

Proof. We first establish the positivity of the quantity

λ(1− b∗(ξ))− ξB̂′ = λ

(
1−

∫ ∞

0
(ξx + 1)b(x)e−ξxdx

)
.
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Since its derivative with respect to ξ,

λξ

∫ ∞

0
x2b(x)e−ξxdx,

is strictly positive, λ(1 − b∗(ξ)) − ξB̂′ is strictly increasing for ξ ∈ [0,∞) and thus attains its

minimum value of zero at the left endpoint ξ = 0. Now the second derivative of fR1 with respect

to α is given by

∂2fR1(α)
∂α2

= 2ξ

{
αb∗(ξ)[ξ − λ(1− b∗(ξ))]2[ξb∗(ξ)− λ(1− b∗(ξ))]

[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]2[αξ − λ(1− b∗(ξ))(α + ξ)]2

+
[λ(1− b∗(ξ))− ξB̂′]

{
α[ξ − λ(1− b∗(ξ))][ξb∗(ξ)− λ(1− b∗(ξ))] + λ2ξ(1− b∗(ξ))2

}

[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]2[αξ − λ(1− b∗(ξ))(α + ξ)]2

+
λ(1− b∗(ξ))(α + ξ)[ξ − λ(1− b∗(ξ))][λ(1− b∗(ξ))− ξB̂′][αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]2

[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]3[αξ − λ(1− b∗(ξ))(α + ξ)]3

+
λξb∗(ξ)(1− b∗(ξ))[ξ − λ(1− b∗(ξ))]2[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]2

[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]3[αξ − λ(1− b∗(ξ))(α + ξ)]3

+
λ(1− b∗(ξ))(α + ξ)[ξb∗(ξ)− λ(1− b∗(ξ))][λ(1− b∗(ξ))− ξB̂′][αξ − λ(1− b∗(ξ))(α + ξ)]2

[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]3[αξ − λ(1− b∗(ξ))(α + ξ)]3

+
λξb∗(ξ)(1− b∗(ξ))[ξ − λ(1− b∗(ξ))][ξb∗(ξ)− λ(1− b∗(ξ))][αξ − λ(1− b∗(ξ))(α + ξ)]2

[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]3[αξ − λ(1− b∗(ξ))(α + ξ)]3

}
.

It follows from the stability condition that [αξ−λ(1−b∗(ξ))(α+ξ)] > 0, [ξb∗(ξ)−λ(1−b∗(ξ))] > 0,

and [ξ − λ(1− b∗(ξ))] > 0. Since λ(1− b∗(ξ))− ξB̂′ is nonnegative,

∂2fR1(α)
∂α2

> 0,

and thus, fR1(α) is strictly convex for all α > 0. Taking second partial derivatives of fR2 with

respect to θ and α, respectively, and assuming stability, shows that

∂2fR2(θ, α)
∂θ2

=
2λξ(1− b∗(ξ))(α + ξ)

θ3[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]
> 0

and
∂2fR2(θ, α)

∂α2
=

2λξ3b∗(ξ)(1− b∗(ξ))[ξb∗(ξ)− λ(1− b∗(ξ))]
θ[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]3

> 0.

Let H(θ, α) denote the Hessian matrix of fR2(θ, α). Then it can be shown that

det(H(θ, α)) =
λ2ξ4b∗(ξ)(1− b∗(ξ))2

{
3ξ2b∗(ξ) + 4[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]

}

θ4[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]4
> 0.

Hence, fR2(θ, α) is strictly convex on X. Consequently, fR = fR1 + fR2 is strictly convex on X,

and thus, f2
R is strictly convex on X.
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Lemma 3 The function f2
Q(α) is strictly convex for all α > 0.

Proof. The second derivative of fQ with respect to α is given by

d2fQ(α)
dα2

= 2ξ2

{
(α + ξ)[ξ − λ(1− b∗(ξ))]{ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))]}

(α + ξ)3[αξ − λ(1− b∗(ξ))(α + ξ)]3

+
ξb∗(ξ)[αξ − λ(1− b∗(ξ))(α + ξ)]{2ξ2 + 3[αξ − λ(1− b∗(ξ))(α + ξ)]}

(α + ξ)3[αξ − λ(1− b∗(ξ))(α + ξ)]3

}
.

It follows from the stability condition that [αξ−λ(1− b∗(ξ))(α+ ξ)] > 0 and [ξ−λ(1− b∗(ξ))] > 0,

and Lemma 2 ensures that λ(1− b∗(ξ))− ξB̂′ is nonnegative. Hence,

d2fQ(α)
dα2

> 0,

which establishes strict convexity of fQ for α > 0. The strict convexity of f2
Q(α) follows directly.

The following theorem is the main result of this section.

Theorem 2 The cost function C(θ, α) is strictly convex on X.

Proof. The proof follows directly from Lemmas 2 and 3. In particular, the strict convexity of

f2
Q(α) for all α > 0 ensures that f2

R(θ, α) + f2
Q(α), and thus C(θ, α), is strictly convex on X.

Theorem 2, along with the convexity of X, show that the optimization problem is a convex

program (CP). A CP guarantees that any stationary point (Karush-Kuhn-Tucker point) is a global

minimizer, but to ensure existence of a solution, the feasible region must be closed and bounded.

Although X is bounded, it is not closed. To circumvent this complication, we note that, for all

values of θ and α,

∂C(θ, α)
∂θ

=
−2cRλ2ξ(α + ξ)(1− b∗(ξ))

θ2[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]
fR(θ, α) < 0
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and

∂C(θ, α)
∂α

=

−2cRλ2ξ(1−b∗(ξ))fR(θ, α)





λ(1− b∗(ξ))
{

(α + ξ)[λ(1− b∗(ξ))− ξB̂′] + ξb∗(ξ)[ξ − λ(1− b∗(ξ))]
}

b∗(ξ)[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]2[αξ − λ(1− b∗(ξ))(α + ξ)]

+
ξ2b∗(ξ)

θ[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)]
+

α
{

ξ[λ(1− b∗(ξ))− ξB̂′] + b∗(ξ)[αξ − λ(1− b∗(ξ))(α + ξ)]2
}

b∗(ξ)[αξb∗(ξ)− λ(1− b∗(ξ))(α + ξ)][αξ − λ(1− b∗(ξ))(α + ξ)]2





− 2λcQfQ(α)

{
ξ3b∗(ξ)− (α + ξ)2[ξB̂′ − λ(1− b∗(ξ))] + 2ξb∗(ξ)[αξ − λ(1− b∗(ξ))(α + ξ)]

b∗(ξ)2(α + ξ)2[αξ − λ(1− b∗(ξ))(α + ξ)]2

}
< 0.

Hence, the cost function C(θ, α) is monotonically decreasing in both θ and α and is bounded below

by

cS
λ(1− b∗(ξ))2

ξ2b∗(ξ)2
+cR

λ3(1− b∗(ξ))2[λ(1− b∗(ξ))− ξB̂′]2

b∗(ξ)2[ξb∗(ξ)− λ(1− b∗(ξ))]2[ξ − λ(1− b∗(ξ))]2
+cQ

λ[ξB̂′ − (1− b∗(ξ))]2

ξ2b∗(ξ)2[ξ − λ(1− b∗(ξ))]2
.

Therefore, the budget constraint (35) is always binding, and we may substitute

θ =
D − cαα

cθ

into C(θ, α). Differentiating the objective function with respect to α and setting it equal to zero,

the optimal repair rate, denoted by α∗, is the unique root that satisfies Eq. (34). Subsequently,

the equation,

θ∗ =
D − cαα∗

cθ
,

may be solved to obtain the optimal retrial rate θ∗. Thus, (θ∗, α∗) is a stationary point of C on X,

and hence, the global minimizer.

5.2 Numerical Examples

We now illustrate the solution procedure in two distinct scenarios. In the first case, we assume

the service times are exponentially distributed with positive rate parameter µ. In this case, the

Laplace transform of the service time distribution is given by

b∗(s) =
µ

µ + s
,
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which gives

b∗(ξ) =
µ

(µ + ξ)

and

B̂′ =
λµ

(µ + ξ)2
.

In the second scenario, we assume the service times are uniformly distributed on the interval

(0, 2/µ). In this case, the Laplace transform of the service time distribution is

b∗(s) =
µ(1− e−2s/µ)

2s

so that

b∗(ξ) =
µ(1− e−2ξ/µ)

2ξ

and

B̂′ =
λµ

2ξ2

[
1− exp

(−2ξ

µ

)(
1 +

2ξ

µ

)]
.

The cost coefficients in both cases are: cθ = cα = cS = 1, and cR = cQ = 100. The remaining

parameters, as well as the optimal solutions (indicated by ∗), are specified in Table 1.

Table 1: Optimal repair and retrial rates for two numerical examples.

Service time distribution λ µ ξ D θ∗ α∗ C(θ∗, α∗)
Exponential (µ) 5.0 10.0 1.5 30.0 11.23 18.77 5.85

Uniform on (0,2/µ) 5.0 10.0 1.5 30.0 11.69 18.31 5.18

As expected, Table 1 verifies that the budget constraint is binding at the optimal solution. In

particular, with cθ = cα = 1, we have θ∗ + α∗ = D = 30.0 in both examples.
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